
Longest increasing
subsequence

By Taariq Mowzer

What is an increasing subsequence?

Given a sequence a subsequence is a ordered subset of the
subsequence…
Probably.

E.G given [5, 12, 6, 2 ,1 ,9, 1]

The following are subsequences: [12], [6, 1], [5, 12, 1, 1] and [5, 12, 6, 2]

The following are not [1, 6] and [12, 5, 1]

A increasing subsequence is a subsequence that is increasing*.

I’ll be working with strictly increasing

How to find an increasing subsequence?

Brute Force of course!

[5, 1, 3, 2]

Is just:

• [5], [1], [3], [2]

• [5, 1], [5, 3], [5, 2], [1, 3], [1, 2], [3, 2]

• [5, 1, 3], [5, 1, 2], [5, 3, 2], [1, 3, 2]

• [5, 1, 3 , 2]

Brute Force of course!

• [5, 1, 3, 2]

• Removing all subsequences that aren’t increasing results in:

• [5], [1], [3], [2]

• [1, 3], [1, 2]

• [1, 3, 2]

And it is clear to see that [1, 3, 2] is the largest increasing subsequence

And it is only O(2n)

End

But wait

What if we have more than 25 elements?

Then consider the following algorithm which operates in O(n2)

Let our sequence of numbers be stored in an array called ‘X’.

We will proceed with dynamic programming.

Let mem[j] store the index k of the smallest X[k] such that there is an
increasing subsequence ending at k.

Let prev[j] store the predecessor of X[k] in the longest increasing
subsequence of size j ending at X[k]

mem[j]: is the index k with smallest X[k] such that is an increasing
subsequence of length j ending at k

prev[k]: is the predecessor of X[k]

Notice if we find some X[i] < X[mem[j]], then mem[j] = i ,as X[i] is
smaller

Also prev[i] = mem[j - 1]

We will now iterate over the entire list X and update mem and prev

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

0

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

0

0, 8

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

0

0, 8 0,4

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 2, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

0

0,4

0, 4, 12

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

0

0,4 0, 2

0, 4, 12

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 4, 3, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1]

0

0, 2

0, 4, 12 0, 4, 10

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 4, 3, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, 4, -1, -1, -1, -1, -1, -1, -1, -1]

0

0, 2

0, 4, 10 0, 2, 6

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 4, 3, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, 4, 6, -1, -1, -1, -1, -1, -1, -1]

0

0, 2

0, 2, 6

0, 2, 6, 14

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 8, 3, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, 4, 6, 0, -1, -1, -1, -1, -1, -1]

0

0, 2 0, 1

0, 2, 6

0, 2, 6, 14

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 8, 3, 6, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, 4, 6, 0, 6, -1, -1, -1, -1, -1]

0

0, 1

0, 2, 6

0, 2, 6, 14 0, 2, 6, 9

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 8, 10, 6, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, 4, 6, 0, 6, 8, -1, -1, -1, -1]

0

0, 1

0, 2, 6 0, 1, 5

0, 2, 6, 9

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 8, 10, 6, 9, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, 4, 6, 0, 6, 8, 9, -1, -1, -1]

0

0, 1

0, 1, 5

0, 2, 6, 9

0, 2, 6, 9, 13

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 8, 12, 6, 9, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, 4, 6, 0, 6, 8, 9, 8, -1, -1]

0

0, 1

0, 1, 5 0, 1, 3

0, 2, 6, 9

0, 2, 6, 9, 13

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 8, 12, 6, 9, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, 4, 6, 0, 6, 8, 9, 8, 9, -1]

0

0, 1

0, 1, 3

0, 2, 6, 9

0, 2, 6, 9, 13 0, 2, 6, 9, 11

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 8, 12, 6, 14, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, 4, 6, 0, 6, 8, 9, 8, 9, 12]

0

0, 1

0, 1, 3

0, 2, 6, 9 0, 2, 6, 7

0, 2, 6, 9, 11

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 8, 12, 6, 14, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, 4, 6, 0, 6, 8, 9, 8, 9, 12, 13]

0

0, 1

0, 1, 3

0, 2, 6, 7

0, 2, 6, 9, 11

0, 2, 6, 9, 11, 15

mem[j]: is the index k with smallest X[k] such that is an increasing subsequence of length j ending at k
prev[k]: is the predecessor of X[k]

X = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
mem = [0, 0, 8, 12, 6, 14, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1]
prev = [0, 0, 0, 2, 0, 4, 4, 6, 0, 6, 8, 9, 8, 9, 12, 13]

0

0, 1

0, 1, 3

0, 2, 6, 7

0, 2, 6, 9, 11

0, 2, 6, 9, 11, 15 <-- The answer !

Notice when we look for where our X[i] will go instead of running a for
loop over mem, we can binary search

This reduces the time complexity from O(n2) to O(nlog n)

